Validation of the proximal flow convergence method. Calculation of orifice area in patients with mitral stenosis.
نویسندگان
چکیده
BACKGROUND It has been proposed recently that measuring the flow convergence region proximal to an orifice by Doppler flow mapping can provide a means of calculating regurgitant flow rate. Although verified in experimental models, this approach is difficult to validate clinically because there is no ideal gold standard for regurgitant flows in patients. However, this method also can be used to derive cardiac output or flow rate proximal to stenotic orifices and therefore to calculate their areas by the continuity equation (area = flow rate/velocity). Applying this method in mitral stenosis would provide a unique way of validating the underlying concept because the predicted areas could be compared with those measured directly by planimetry. METHODS AND RESULTS We studied 40 patients with mitral stenosis using imaging and Doppler echocardiography. Doppler color flow recordings of mitral inflow were obtained from the apex, and the radius of the proximal flow convergence region was measured at its peak diastolic value from the orifice to the first color alias along the axis of flow. Flow rate was calculated assuming uniform radial flow convergence toward the orifice, modified by a factor that accounted for the inflow funnel angle formed by the mitral leaflets. Mitral valve area was then calculated as peak flow rate divided by peak velocity by continuous-wave Doppler. The calculated areas agreed well with those from three comparative techniques over a range of 0.5 to 2.2 cm2: 1) cross-sectional area by planimetry (y = 1.08x-0.13, r = .91, SEE = 0.21 cm2); 2) area derived from the Doppler pressure half-time (y = 1.02x-0.14, r = .89, SEE = 0.24 cm2); and 3) area calculated by the Gorlin equation in the 26 patients who underwent catheterization (y = 0.89x + 0.08, r = .86, SEE = 0.24 cm2). Agreement with planimetry was similar for 22 patients with mitral regurgitation and 18 without it (P > .6), as well as for 6 in atrial fibrillation (P > .2). CONCLUSIONS These results validate the proximal flow convergence concept in the clinical setting and also demonstrate that it can be extended to orifice area calculation using the continuity equation.
منابع مشابه
Application of color Doppler flow mapping to calculate effective regurgitant orifice area. An in vitro study and initial clinical observations.
BACKGROUND Analogous to stenotic valve area in the assessment of valvular stenosis, regurgitant orifice area (ROA) represents a fundamental parameter to assess valvular insufficiency. However, this parameter has not been routinely available up to now. In this study, we introduce the concept and provide the methodology to calculate regurgitant orifice area noninvasively, based on the analysis of...
متن کاملEffective mitral regurgitant orifice area: clinical use and pitfalls of the proximal isovelocity surface area method.
OBJECTIVES We attempted to determine the accuracy and pitfalls of calculating the mitral regurgitant orifice area with the proximal isovelocity surface area method in a clinical series that included patients with valvular prolapse and eccentric jets. BACKGROUND The effective regurgitant orifice area, a measure of lesion severity of mitral regurgitation, can be calculated by the proximal isove...
متن کاملThree-dimensional echocardiographic planimetry of maximal regurgitant orifice area in myxomatous mitral regurgitation: intraoperative comparison with proximal flow convergence.
OBJECTIVES We sought to validate direct planimetry of mitral regurgitant orifice area from three-dimensional echocardiographic reconstructions. BACKGROUND Regurgitant orifice area (ROA) is an important measure of the severity of mitral regurgitation (MR) that up to now has been calculated from hemodynamic data rather than measured directly. We hypothesized that improved spatial resolution of ...
متن کاملPhysiologic Application of the Proximal Flow Convergence Method: Clinical Data and Experimental Testing
Background The proximal flow convergence method, a quantitative color Doppler flow technique, has been validated recently for calculating regurgitant flow and orifice area. We investigated the potential of the method as a tool to study different pathophysiological mechanisms of mitral valve incompetence by assessing the time course of regurgitant flow and orifice area and analyzed the implicati...
متن کاملMechanism of dynamic regurgitant orifice area variation in functional mitral regurgitation: physiologic insights from the proximal flow convergence technique.
OBJECTIVES We used the Doppler proximal flow convergence technique as a physiologic tool to explore the effects of the time courses of mitral annular area and transmitral pressure on dynamic changes in regurgitant orifice area. BACKGROUND In functional mitral regurgitation (MR), regurgitant flow rate and orifice area display a unique pattern, with peaks in early and late systole and a midsyst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 88 3 شماره
صفحات -
تاریخ انتشار 1993